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Abstract: The odd-electron (one and three) bond involves resonance between two charge-shift related structures, in 
both MO and VB theory. A physically correct description of odd-electron bonding should reflect the instantaneous 
response of the orbital size and shape to the charge fluctuation inherent in the odd-electron bonding. VB theory 
contains this response and involves charge-fluctuation-adapted orbitals in the resonance structures, resulting in reliable 
bond energies. In contrast, due to its constraints, the Hartree—Fock theory fails to represent this crucial feature of 
the odd-electron bond and generates thereby poor bond energies. A nonempirical remedy for this Hartree—Fock 
bias is proposed. This is the "Uniform Mean-Field Hartree—Fock" (UMHF) procedure which is based on the simple 
unrestricted Hartree—Fock method, but involves orbital occupancy constraints and correction of the resonance energies 
by non-empirical factors. The UMHF approach is tested on three-electron- and one-electron-bonded molecules and 
is shown to yield bonding energies in satisfactory agreement with more sophisticated calculations (up to and beyond 
fourth order of Moller—Plesset perturbation theory). The UMHF procedure is offered as a routine inexpensive tool 
for obtaining odd-electron bond energies for large molecules. 

Introduction 

Odd-electron bonds are now recognized to play an important 
role in radical and electron transfer chemistry. First described 
by Pauling in 1931,1 these bonds owe their stability to a 
resonance between two Lewis structures that are mutually related 
by charge transfer, as shown in (1) for one-electron bonds and 
in (2) and (3) for typical three-electron bonds: 

A ' B + - A + " B (1) 

A'+ :B — A: 'B+ (2) 

A*:B **A: *B (3) 

It has been pointed out that a significant resonance energy 
requires a similar stability of the two resonating Lewis 
structures.23 Clark3 has shown that the odd-electron bond 
energy decreases exponentially with AIP, the difference between 
the ionization potentials of A and B. Consequently, many of 
the known odd-electron bonds are homonuclear, or at least 
involve two atoms of similar IP. Moreover, odd-electron bonds 
are seldom observed in neutral species, because the charge 
transfer in (4) is generally strongly endothermic, especially in 
the gas phase. 

A B - A + B - (4) 
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In MO theory the stability of one- and three-electron bonds 
can be shown4-5 to arise from the fact that they possess one net 
bonding electron in the MO's generated by the (AB): species. 

Experimentally, one-electron6 and especially three-electron 
bonds7-38 are abundant and well-characterized. Numerous 
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(R2S.\SR2)
+ radical cations,813 (RS.-.SR)" radical anions,14-17 

and R2S.-. SR neutral radicals1518-20 have been identified, as 
well as N.-.N,21-25 P.-.P,26-27 As/. As,26-28 Se.-.Se,291 .-.I,30-31 and 
more generally all kinds of X.-.Y (X, Y = N, S, P, halogen, 
etc.) two-center-three-electron (2c,3e) bonds.32-38 Despite the 
ample observations of these species, very little experimental 
data exists for the strengths of their odd-electron bonds, and 
thermodynamic data are remarkably sparse. Apart from some 
recent accurate gas-phase determinations of (2c,3e) binding ener
gies,12-31 the majority of measurements have been indirect, in
volving estimations of energy gaps between a-bonding and a*-
antibonding levels. This situation makes theoretical calculations 
particularly useful, and indeed, apart from a few cases of di
atomic ions, most of the information about odd-electron bonding 
energies in chemistry comes from ab initio theoretical stu
dies.3'51213'39-45 High-level computations are restricted to small 
to medium size species, while size limitation makes Hartree— 
Fock (HF) theory as the only feasible level to obtain odd-
electron bond energies for experimentally occurring odd-electron 
bonds.24 It would have been desirable, therefore, to have a reli
able HF method for odd-electron bonding. However, at present 
the standard HF levels do not seem to be such reliable tools. 

Clark3 and Radom5 have carried out systematic calculations 
on series of cation radicals involving odd-electron bonds 
between atoms of the first and second rows of the periodic table, 
with hydrogen atoms as substituents. These calculations, 
performed at both unrestricted Hartree—Fock (UHF) and 
Moller—Plesset perturbation (MP) levels, exhibit a number of 
important and sometimes intriguing features: 

(i) The inclusion of electron correlation is essential for the 
calculation of three-electron bonding energies. The Hartree— 
Fock error is nonsystematic and always large, sometimes of the 
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same order of magnitude as the bonding energy itself (see later 
Table 1), or even slightly larger than the bonding energy as in 
the case of the F2

- anion radical.46 The error is smaller in the 
case of one-electron bonds,3 yet it may be as large as 13 kcal/ 
mol as in the CH3CH3+ cation (see Table 2). In all cases, the 
lack of electron correlation leads to an underestimation of the 
bonding energy. In contrast, for the isomeric species that are 
devoid of odd-electron bonding, e.g., the hydrogen-bonded 
complexes between cation radicals and their neutral molecules, 
the UHF bonding energies are quite good—close to accurate 
values calculated at the MP4 level.5 

(ii) Paradoxically, the UHF optimized geometries of odd-
electron-bonded species are correct. Considering that bond 
energies are poorly reproduced at this level, one would have 
expected the optimized odd-electron bond lengths to be too long. 
Nevertheless, the distance between the odd-electron bonded 
atoms is well reproduced at the UHF level. In some cases,5 

the Hartree—Fock-optimized structure with correct geometric 
parameters is incorrectly found to be a transition state rather 
than a true minimum. There is therefore a disparity in the 
descriptions of the bond length and bond energy of three-electron 
bonds in UHF theory. 

(iii) The MP2 level is satisfactory and provides geometries 
and bonding energies in good agreement with higher orders of 
perturbation theory.5-47 

(iv) Curiously, the Hartree—Fock error seems to disappear if 
a minimal basis set is used,5 and the resulting three-electron 
bonding energies are, if not accurate, at least of the right order 
of magnitude. We will see below that this point is not fortuitous 
but can be rationalized based on the physical description of the 
odd-electron bond. 

Another problematic aspect of calculations is that some but 
not all of the odd-electron bond dissociation energies are quite 
sensitive to substituent effects,5-l2-48 so that no standard bonding 
energies can be defined. This, and the findings of Clark3 and 
Radom5 that the accurate calculation of odd-electron bonding 
energies requires moderate to large basis sets, restricts the 
computations by necessity to small model systems whose 
relevance to larger molecules is limited. What we are after, 
then, is a reliable computational method that emerges from the 
correct physical description of the odd-electron bond and is 
economical and useful as a routine computational tool to obtain 
odd-electron bond energies. 

In this line, the first general aim of the present study is to 
establish the physical basis for the failure of the Hartree—Fock 
procedure for odd-electron bonds. This will be done by 
answering the following questions: (i) Why are correlation 
effects so important in three-electron bonds, despite the fact 
(shown later) that the Hartree—Fock wave function for odd-
electron bonds is qualitatively correct? (ii) Why does the 
Hartree—Fock method yield correct geometries for odd-electron 
bonded species, while the bonding energies are exceedingly 
underestimated? (iii) Why does the Hartree—Fock error disap
pear in a minimal basis set? 

The second aim of this study is to propose a nonempirical 
remedy for the Hartree—Fock method, dubbed Uniform Mean-
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(Hiberty, P. C; Demachy, I.; Humbel, S., manuscript in preparation). 
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Chart 1. MP2-0pt imized Structures for Fragments 
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Chart 2. MP2-Optimized Structures for 
One-Electron-Bonded Radical Cations 
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Si 
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HMg + (C-,) H2AP(D - 1 1) H3 Si + (C31.) 

Field HF (UMHF), that would take advantage of the correct 
qualitative form of the wave function and allow good bond 
energies to be obtained without resort to electron correlation. 

Theoretical Methods 

Standard unrestricted Hartree—Fock (UHF) calculations were per
formed with the GAMESS and GAUSSIAN-92 suites of programs.49 

All the computational results displayed in the tables, including those 
quoted from other sources, were performed with the 6-3IG* basis set,50 

with the exception of the He2
+ species that was calculated with the 

6-3IG** basis set that contains p-type polarization functions for the 
helium atoms.50 

The Moller—Plesset (MP) perturbation theory50 was used in its 
unrestricted formalism throughout this study. The MP dissociation 
energies were calculated at the MP2//MP2 and MP4//MP2 level, i.e. 
the geometries of the molecules and separated fragments have been 
optimized at the second order of perturbation (MP2), while the final 
energies were calculated at the second (MP2) and fourth (MP4) orders; 
the frozen-core approximation is applied in this latter case. The MP4/ 
/MP2 and MP2//MP2 results are quoted from ref 5 for the three-electron 
bonds (Table 1) while those for the one-electron bonds were calculated 
in this work (Table 2). The MP2-optimized geometries of the one-
electron bonded species and their separated fragments are displayed in 
Charts 1 and 2 (bond lengths in A, angles in deg). 

(49) (a) GAMESS-93, Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; 
Nguyen, K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. 1990, 10, 52, 
revision March 11, 1993. (b) Frisch, M. J.; Trucks, G. W.; Head-Gordon, 
M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, 
H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; 
Raghavachari, K.; Binkley, J. S.; Gonzalez, C ; Martin, R. L.; Fox, D. J.; 
Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92, Revision 
C3; Gaussian, Inc.: Pittsburgh, PA, 1992. 

(50) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio 
Molecular Orbital Theory; Wiley: New York, 1986. 

\ 107-5 ^ l \ W1-568 

/ 
2.950 

(D211) 
\ 

S: 
2.701 

(D31,) 

W 1.471 
JSi 

V. 
For the sake of consistency, the geometries employed to calculate 

odd-electron UMHF bonding energies were those optimized at the UHF 
level, and quoted from refs 3 and 5, since the UMHF and UHF methods 
are equivalent in the vicinity of the local minima of the odd-electron-
bonded species. 

The Orbital Response to Charge-Fluctuation 

Three-Electron Bonds. Why does the H a r t r e e - F o c k level 
underestimate bonding energies so much? In the case of 
homonuclear two-electron bonds, the explanation is simple: the 
Hartree—Fock wave function incorrectly describes the bond as 
50% covalent and 50% ionic, while the covalent component 
should be largely preponderant. However, there is nothing as 
such in homonuclear odd-electron bonds. Consider WHF> the 
Hartree—Fock wave function of a three-electron bond modeled 
by the He2+ radical cation: 

^ H F = I W „ (5) 

The orbitals og and oa in the determinant in eq 5 are respectively 
bonding and antibonding molecular orbitals: 

cg = X\ + Xr 

ou = X\- Xr 

(6) 

(7) 

where the normalization factors have been dropped (as well as 
in all subsequent formulas in this paper), and the atomic orbitals 
X) and Xr are assumed to be the same in (6) and (7). 
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More insight into the physical meaning of the single 
determinant in eq 5 can be gained by substituting (6) and (7) 
into (5), and transforming WHF into a function of valence bond 
type: 

^HF = IZlZlZrI + IXlXrXrI (8) 

Actually the physical picture involved in eq 8 corresponds to 
the familiar description (eq 2) of three-electron bonds in terms 
of two resonance structures 1 ** 2. Thus, 

®0 0® 
X1 X, Xi X, 

1 2 

a fundamental feature of odd-electron bonding is charge 
fluctuation which is described formally the same by both VB 
and MO methods. Here lays an apparent paradox: despite its 
formally correct description, the UHF (or ROHF) method does 
not produce meaningful bonding energies, not even orders of 
magnitude. 

A subtle inadequacy is revealed however if eq 8 and 
resonance structures (1 *» 2) are considered in detail. For 
symmetry reasons inherent to the Hartree—Fock method, the 
X\ and Xr atomic orbitals are the same in both determinants, 
which means that the doubly occupied and the singly occupied 
orbitals of the left and right atoms in 1 have exactly the same 
shape and size, and are optimized for an average occupation of 
3/2 electrons. It follows that neither one of the resonating 
structures 1 or 2 are correctly described at this level, and that 
an appropriate function should correspond to 3 ** 4, in which 
the doubly occupied orbitals x" and Xr ^^ different, and in 
particular larger, then the singly occupied ones x\ and Xr-

0 © ©© 
x; x; x; x; 

3 4 

These orbitals, which are charge-fluctuation-adapted, have been 
called "breathing orbitals" in a recent work,51 by reference to 
their change in size to match the charge fluctuation. 

This extra flexibility is not possible in the Hartree-Fock 
framework but is possible in valence bond (VB) theory, which 
allows a wave function, WVB, to be defined completely 
analogous to WHF in eq 8, except that the orbitals xl and x" are 
different from %\ and ^ , so that the orbitals can now adapt 
their shape to their actual occupancy in 3 and 4 

^VB = \X\x\t\ + \X\XX\ (9) 

x\*x\ do) 

X"*-X\ (H) 

where the superscripts i and n indicate that the orbitals belong 
either to the ionic fragment or to the neutral one. 

Up to now we have considered only "active" orbitals, i.e. 
those orbitals that are directly involved in the three-electron 
bonds. But molecules larger than He2+ also involve "inactive" 
orbitals, alongside the three-electron bond. Such orbitals 
maintain constant occupation but still respond to the charge 
fluctuation, and to the instantaneous changes of the fragment 
on which they reside. Thus, the inactive orbitals would also 

fluctuate in size and shape in response to the charge fluctuation 
between the fragments. Once again though, this flexibility that 
exists in VB is prohibited in Hartree—Fock, due to its builtin 
symmetry constraints. The corresponding expressions for WHF 
and 1PvB with inclusion of inactive orbitals become therefore 
eqs 12 and 13: 

fH F (3-e) = \...^...4>x...Xaar\ + | . . A " 0 r - W r l (12) 

WVB(3-e) = \...4>\...4>\...x\x\x\\ + \.-4\--4%-X\x:Xr\ (13) 

Here the orbitals of types <p\ and </>r represent some inactive 
orbitals of the left and right fragments, respectively, and the 
i-superscribed orbitals are all different from their n-superscribed 
analogs in eq 13. 

In accord with their above difference, WHF and WVB differ 
drastically in their performances. Indeed, F2- is found to be 
higher in energy, by 4 kcal/mol, than the separated F and F -

fragments at the ROHF level47 in the 6+3IG* basis set, while 
WVB yields a bonding energy, in the same basis set, of 29.7 
kcal/mol,51 close to the experimental value of 30.2 kcal/mol. 
Thus, a simple description of the three-electron bond in terms 
of two resonance structures is quantitatively correct if the orbitals 
are allowed to follow the instantaneous charge fluctuation, by 
rearranging in size and shape. This effect, that we have called 
"breathing orbital effect",51 is not taken into account by the 
Hartree—Fock method, that generates orbitals which are not 
adapted to the instantaneous electronic population of the 
fragments at bonding distances. In contrast, at large distances, 
the charge fluctuation vanishes: one fragment has one electron 
more than the other and both of them have orbitals adapted to 
their specific number of electrons. As a consequence, the 
Hartree—Fock method describes the separated fragments better 
than the bonded molecule, and provides binding energies which 
are too small. 

One-Electron Bonds. The single determinantal Hartree-
Fock wave function for a one-electron bond involves a singly 
occupied o$ orbital and can be expanded, as above, into its VB 
components: 

WHF(l-e) = |...0,...0r...Zl| + |...0,..A-Z,l (14) 

where x\ and Xr are the active fragment orbitals of the left- and 
right-hand side fragments. 

As in the three-electron case, here too the expansion shows 
that the Hartree-Fock description for one-electron-bonded 
systems is formally correct, corresponding to the resonating 
picture of eq 1, but again lacking the instantaneous adaptation 
of the orbitals to the charge fluctuation. However, the Hartree-
Fock underestimation of bonding energies is now much less 
severe than in three-electron bonds, and this can be understood 
by considering the VB analog of eq 14, with charge-fluctuation-
adapted orbitals, superscribed by i and n: 

^VB(l-e) - |...tf...#...Zl| + \...(j>\..4t...xT\ (15) 

Comparison of eqs 14 and 15 shows that the breathing orbital 
effect is now restricted to the set of inactive orbitals, unlike the 
three-electron bond where the effect is expressed in active as 
well as in inactive orbitals. It is expected, therefore, that the 
Hartree-Fock bias in one-electron bonds will be less pro-

(51) Hiberty, P. C; Humbel, S.; Archirel, P. J. Phvs. Chem. 1994, 98, 
11697. 
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nounced than in three-electron-bonded species, resulting in a 
smaller Hartree-Fock error. 

The Uniform Mean-Field Hartree-Fock (UMHF) 
Procedure: A Remedy 

Since the Hartree-Fock wave function has a formally correct 
blend of the reasonating charge shift structures, it may be 
reasonable to seek a way to rectify the bias of the method. Such 
a remedy to the Hartree-Fock error need not necessarily involve 
an improvement of the absolute energies; but in keeping with 
the nature of the problem, the remedy should lead to a consistent 
description of both the molecule and the separated fragments. 
In this sense, the consistency of the dissociation energy profile 
for an odd-electron bond rests on two conditions: (i) a consistent 
description of the individual resonance structures at all distances, 
and (ii) a satisfactory estimate of the resonance energy due to 
mixing of these resonance structures. These two aspects are 
considered below in turn. 

A Consistent Description of the Individual Resonance 
Structures. It follows from the preceding discussion that an 
obvious defect of the Hartree-Fock method is an improper 
description of the individual resonance structures at bonding 
distances, as compared to a much better description at large 
distances. The VB method with charge-fluctuation-adapted 
orbitals51 cures this defect by improving the description of the 
bonded species, but this VB method has the drawback of being 
CPU consuming. An alternative economical solution consists 
of removing the imbalance by extending the Hartree-Fock 
mean-field defect to any distances up to that of separated 
fragments. This can be done by freezing the mean-field orbital 
occupancy of the bonded molecule (e.g., 3/2 and 1/2 for three-
electron and one-electron homonuclear bonds) at any distance 
between the fragments. Thus, the absolute error that is so 
introduced with respect to the physically correct VB solutions 
(eqs 13 and 15) would become precisely of the same nature at 
a short distance and all the way to infinite distance, resulting 
thereby in a balanced and consistent dissociation curve. This 
is the main principle of the "Uniform Mean-Field Hartree-
Fock (UMHF) procedure" we propose in this work. In the case 
of symmetrical molecules, the procedure is particularly simple 
and consists of maintaining the symmetry of the wave function 
all the way to the limit of separated fragments which are 
considered as a symmetrical supersystem in a mean field. More 
generally, the method can easily be extended to molecules 
having no particular symmetry, as will be discussed in the 
Appendix. 

Figure 1 displays schematic dissociation curves which 
compare the UMHF method to the VB and UHF methods, for 
a three-electron bonded system of the type X2+. At the UHF 
level, the wave function is symmetric at bonding distances but 
symmetry-broken at long distances. Somewhere in-between 
these two distances, the dissociation curve displays a singularity 
due to sudden symmetry breaking. On the other hand, the VB 
wave function which, at large distances, approximately coincides 
with the UHF curve, gradually deviates from this curve and 
becomes smoothly a linear combination of two symmetry-broken 
VB structures with charge-fluctuation-adapted orbitals at bond
ing distances. The UMHF curve, which keeps its symmetry at 
all distances, coincides with the UHF curve at bonding distances 
but departs from it at the limit of separated fragments. 

The above basic UMHF procedure was applied to all the 
homonuclear three-electron and one-electron bonds, of the 
HnX/.XHn

+ and HnX
1XHn

+ types, that have been considered 
by Clark3 and Radom.5 The unrestricted (UHF) method was 
preferred over the restricted (ROHF) method because of greater 

<. Energy 

Figure 1. Schematic dissociation profiles as calculated by the VB, 
UHF, and UMHF methods. The R coordinate is the interatomic distance 
between the odd-electron-bonded atoms. The UHF curve, dotted line, 
merges into the UMHF one at short distances and into the VB one at 
infinite distance. In-between, it displays a discontinuity due to sudden 
symmetry breaking. 

flexibility of the former. For the diatomic cation radicals, the 
UMHF calculations are carried out with left-right symmetry 
imposition on the wave function. For polyatomic species, the 
fragments undergo geometry reorganization during the dissocia
tion, and therefore the UMHF calculation requires two steps. 
First, the molecule and the wave function keep their left-right 
symmetry, and only the distance between the odd-electron-
bonded atoms is gradually elongated. Second, the geometries 
of the fragments (one neutral molecule and one radical cation) 
are optimized at the UHF level. The ensuing reorganization 
energy (a negative quantity) is added to the dissociation energy 
calculated in the first step, to get the final dissociation energy. 

The results for three-electron bonds are displayed in the third 
column of Table 1, entitled "UMHF uncorrected", together with 
the dissociation energies calculated by Radom at the UHF, MP2, 
and MP4 levels5 with the same basis set. It is apparent that 
our procedure, already at this simple stage, yields much 
improved dissociation energies relative to UHF results. In all 
cases the orders of magnitude are correct, and the errors relative 
to MP4 results never exceed 7 kcal/mol.52 

The breathing orbital effect can roughly be estimated at this 
point as the corresponding difference between dissociation 
energies calculated at the UMHF and UHF methods. This 
difference is seen to display regular tendencies. First, the effect 
gradually increases as the bonded atoms are varied from left to 
right of the periodic table, ranging from 22 kcal/mol in NH3-
NH3+ to 32 kcal/mol in Ne2+, and from 11 to 15 kcal/mol in 
the corresponding second-row species. Second, the breathing 
orbital effect is consistently smaller for the second-row species 
in comparison with their first-row counterparts. These tenden
cies reflect nicely the dependence of the effect on the intrinsic 
size of the orbitals, and on the nature of the adjacent inactive 

(52) We have checked, on the example of Ne2+, that the UMHF method 
still behaves well when the basis set is increased. In the 6-31G(2d,f) basis 
set, the MP4 and uncorrected UMHF methods provide bonding distances 
of 1.698 and 1.718 A, respectively, and bonding energies of 38.2 and 41.5 
kcal/mol. 
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Table 1. Calculated Dissociation Energies, in kcal/mol, of Some Three-Electron-Bonded Radical Cations" 

HeHe+ 

NeNe+ 

ArAr+ 

HFFH+ 

HClClH+ 

H2OOH2
+ 

H2SSH2
+ 

H3NNH3
+ 

H3PPH3
+ 

Me2OOMe2
+ 

symmetry 

D.„ 
D-/, 
D-„ 
C2/, 
C2 
C2/, 
C2/, 
DM 

C21, 

C2/, 

UHF//UHF" 

43.2 
9.1 

11.2 
19.8 
17.4 
22.9 
19.8 
24.1 
19.4 
1.3 

UMHF* uncorrected 

58.1 
40.7 
26.2 
51.9 
31.9 
51.1 
32.6 
46.2 
30.1 
33.1 

£ 
0.901 
0.997 
0.988 
0.985 
0.978 
0.975 
0.961 
0.948 
0.990 
-

S 

0.973 
0.971 
0.969 
0.952 
0.960 
0.946 
0.956 
0.942 
0.937 
-

UMHF*C corrected 

49.6 
39.4 
25.0 
48.5 
29.9 
47.0 
30.0 
40.2 
27.3 
30.7 

MP2//MP2rf 

49.9 
38.8 
24.2 
48.2 
29.5 
46.5 
30.1 
40.3 
27.3 
31.9 

MP4//MP2rf 

53.2 
37.0 
23.7 
45.4 
28.9 
44.0 
29.6 
39.2 
26.8 
-

" Except for He2
+ , all calculations use the 6-3IG* basis set. The 6-3IG** basis set has been used for He^+. b UHF-optimized structures from 

ref 5 except for He2+ and Me200Me2+ (this work). H e - H e and 0—0 bond lengths are 1.078 and 2.084 A at this level for the latter species. 
c Dissociation energy corrected for resonance energy (see eq 26). d MP2-optimized structures from ref 5, except for He2+ (this work) and Me2OOMe2

+. 
For the latter the UHF geometry has been used. For He2

+ the MP2-optimized bond length is 1.0815 A. 

Table 2. Calculated Dissociation Energies, in kcal/mol, of Some One-Electron-Bonded Radical Cations" 

HBeBeH+ 

HMgMgH+ 

H2BBH2
+ 

H2BBH2
+ 

H2AlAlH2
+ 

H2AlAlH2
+ 

H3CCH3
+ 

H3CCH3
+ 

H3SiSiH3
+ 

H3SiSiH3
+ 

symmetry 

D-/, 
D-/, 
D2rf 

D2I, 

Dld 

D2/, 
DM 

DJ1, 

Did 

Da, 

UHF//UHF* 

48.1 
31.4 
45.6 
39.3 
28.5 
26.7 
38.2 
36.7 
30.4 
29.5 

UMHF' uncorrected 

51.3 
33.7 
54.4 
48.2 
32.9 
31.0 
54.4 
52.8 
37.2 
36.3 

S 

0.991 
0.989 
0.982 
0.982 
0.987 
0.987 
0.977 
0.977 
0.985 
0.985 

UMHF*C corrected 

50.4 
32.9 
52.1 
46.1 
31.7 
29.8 
51.7 
50.1 
35.8 
35.0 

MP2//MP2"' 

49.4 
31.8 
54.6 
46.1 
31.3 
29.4 
51.4 
49.6 
36.0 
35.0 

MP4//MP2rf 

49.7 
32.1 
56.0 
47.1 
32.0 
30.1 
51.0 
49.2 
36.7 
35.6 

" All calculations use the 6-31G* basis set. b UHF-optimized structures, taken from ref 3. c Dissociation energy corrected for resonance energy 
(see eq 26, with /3 = 1). d MP2-optimized structures (this work, Chart 2). 

orbitals. Accordingly, the tendencies in the breathing orbital 
effect observed in Table 1 may be explained as follows: (i) As 
the atom X varies from left to right of the periodic table, the 
orbitals of X become gradually more compact, and one can 
expect that the smaller the orbitals, the more sensitive they 
become to the freedom to respond to the charge fluctuation, 
(ii) In the same series, the three-electron-bonded X atoms bear 
gradually fewer substituents and more lone pairs. The latter 
electrons are closer to nuclei, and therefore more sensitive to 
the charge fluctuation, in comparison with electron pairs in X - H 
bonds. 

These two factors combine to increase the breathing orbital 
effect from left to right along a row of the periodic table. 
Similarly, one may note that the breathing orbital effect is 
consistently smaller in the second row than in the first, in 
agreement with the increased diffuseness of the valence orbitals 
from top to bottom of the periodic table. 

The UMHF procedure was applied also to the series of one-
electron bonds previously studied by Clark.3 As has been 
discussed above, the breathing orbital effect in one-electron 
bonds involves only the inactive orbitals. The effect can 
therefore be expected to be smaller than in three-electron bonds, 
and directly proportional to the number of inactive electron pairs, 
i.e. more and more important from lithium to carbon and from 
sodium to silicon. Finally, for the same reasons as those 
discussed for the three-electron bonds, the effect should be 
smaller in the second-row species in comparison with their first-
row counterparts. Our results, displayed in the third column 
of Table 2, confirm these predictions and yield once again 
dissociation energies of the right order of magnitude, and 
significantly better than the UHF values. 

The Influence of Breathing Orbitals on the Resonance 
Energy. It is noteworthy that our procedure, as used at the 
above simple stage (third columns of Tables 1 and 2), yields 
dissociation energies which are systematically overestimated 
relative to MP2 and MP4 results. This suggests that the 

systematic error might originate in a well-defined physical 
reason rather than in a mere inaccuracy. As the energies of the 
individual VB structures are in principle calculated in a balanced 
way throughout the dissociation curve, a possible source of error 
lies in the calculation of the resonance energy (RE), i.e. the 
stabilization associated with the mixing of the two VB structures. 
This hypothesis is conceptualized and generalized in the 
discussion that follows. 

In qualitative VB theory (as in qualitative MO theory), the 
exact polyelectronic hamiltonian is replaced by a sum of 
effective monoelectronic hamiltonians h, so that the effective 
polyelectronic hamiltonian, H, reads: 

H = h ( l )+h(2) . . . + h(i) + ... (16) 

Some simple rules allow the calculation of the matrix elements 
of H between determinants.53-54 In the case where two 
determinants are related by a charge transfer from one spin 
orbital to the other, all other orbitals being equal, the off-
diagonal matrix element is simply the resonance integral 
between the two orbitals that participate in the charge transfer. 
Thus, for the three-electron bond with the mean-field orbital 
description in eq 12 (charge transfer: %\ —*^r), the leading term 
of the off-diagonal matrix element in eq 17 will take the simple 
form in eq 18: 

H y 3 - e ) = <|...01...0 r...Zl^ r | |H||...01...^ r...Zlz t3f rl> (17) 

H y 3 - e ) ^ 1 I h I x n ) (18) 

where the superscript a indicates that we are dealing with 
averaged AOs that do not follow the charge fluctuation. 

(53) Shaik, S. In New Concepts for Understanding Organic Reactions; 
Bertran, J., Csizmadia, I. G., Eds.; Kluwer: Dordrecht, 1989: NATO ASI 
Ser. Vol. C267. 

(54) Shaik, S. S.; Duzzy, E.; Bartuv, A. J. Phys. Chem. 1990, 94, 6574. 
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Consider now the matrix element in eq 19, for the case where 
breathing (charge-fluctuation-adapted) orbitals are used as in 
eq 13. Here the 0", cp[, %\, and %\ orbitals of the first determi
nant are slightly different from <j>\, 0", /\, and %" in the second. 
This will introduce a product of overlaps S(3-e) preceding the 
resonance integral, as expressed in eqs 20 and 21. 

H^3-e) = ( | . . . ^ . . 4 . . ^ l | H | | . . . 0 i . . . ^ - - . ^ ^ l > (19) 

H*ff(3-e) = S(3-e) <tf |h|tf> (20) 

S(3-e) = ..mtiyM+X-WMMffl (2D 

where the superscript b in eq 19 stands for breathing orbitals. 
The S(3-e) term is a product of pairwise overlaps between the 
orbitals of the first determinant and their analogs of the second 
determinant, eq 21. 

Note also that the resonance integral in eq 18 is taken with 
respect to the averaged orbitals (x\,Xr), while the resonance 
integral in eq 20 is taken with respect to the more diffuse 
counterpart of the charge-fluctuation-adapted orbitals (#",%"). 
It is clear, therefore, from eqs 18 and 20 that the use of charge-
fluctuation-adapted vs mean-field orbitals leads to different off-
diagonal matrix elements, and therefore to different resonance 
energies whose ratio can be expressed as follows: 

—3 = ^ - ^ = PS(3-c) (22) 
REa Hy3-e) 

where ft is the ratio of the resonance integrals: 

Since we understand the nonempirical basis for the overes
timated UMHF bond energies, we are in a position to remedy 
this problem and obtain thereby accurate dissociation energies 
within the UMHF procedure. This can be done by extracting 
the nonempirical value of the /JS factor. Indeed, since dis
sociation energies are proportional to REs, then multiplying the 
uncorrected dissociation energies by the factor /SS would lead 
to accurate dissociation energies. 

Computing the fi and S factors requires an easy access to 
charge-fluctuation-adapted orbitals without having to actually 
compute them within the resonating VB wave function. It has 
been shown recently51 that the charge-fluctuation-adapted orbit
als of a three-electron-bonded species are very close to the 
orbitals arising from Hartree—Fock calculations on the separate 
fragments. Thus, the i-superscribed orbitals can be taken as 
the UHF orbitals of an ionic fragment, while the n-superscribed 
ones can be taken as the UHF orbitals of the same fragment 
but with a neutral electronic occupancy. The averaged orbitals 
are simply calculated as arithmetic means of i- and n-
superscribed breathing orbitals. 

Once the orbitals have been determined, the S term, which 
is a simple product of overlaps, is readily calculated. The 
calculation of the fi term is achieved by utilizing options which 
exist in most quantum chemical software49 and which allow 
the computation of energy expectation values of guess functions 
composed of input orbitals at will. The option is the zero SCF 
iteration that orthogonalizes the orbitals without changing the 
guess determinant, and provides its expectation energy, outputed 
as the energy at zero iteration. 

Using this technique, the resonance integral between charge-
fluctuation-adapted AO's xl ^ d Zr c a n t»e expressed as 
proportional to the energy difference between two determinants, 
as in eq 24 (dropping the normalization factors): 

<|...0,...0r...z,(^+^)Zr!!^--^!-.^---Zi(z?+z?)z,l>-

(\..4x..4x...xxx\xM\\--4v-4^XxX\xt\) (24) 

where the two determinants only differ by one spin orbital, 
which is a pure fragment orbital in the second determinant and 
a bonding combination in the first.55 

A similar procedure can be used for the matrix element 
corresponding to averaged orbitals: 

(XllhlZr)'* 

(\..4i--4r"Xl(Xl+Xr)Xt\\^\"4i--4r"Xl(Xl+XTyXT\)-

{\...<p{..4r...xaam\--4\..4r--xaxxr\) (25) 

Then the ft factor is obtained by means of eq 23. 
As a systematic test of the above procedure, we applied it to 

all the three-electron-bonded species of Table 1 and calculated 
the final dissociation energies De(RE-corrected) by multiplying 
the uncorrected values by the /JS factor: 

De(RE-corrected) = /JSDe(uncorrected) (26) 

Note that in the case of polyatomic species, the corrective factor 
applies to the dissociation energy of the symmetrical fragments, 
calculated before the symmetry of the supersystem is broken 
upon geometry relaxation of the fragments to their charge-
specific geometry (see discussion above). 

The results, displayed in the sixth column of Table 1, show 
that in accord with our qualitative analysis all the /? and S factors 
are smaller than unity, and therefore the /JS terms lower the 
uncorrected UMHF bond energies. As a result, the final UMHF 
dissociation energies, displayed in the sixth column, are 
extremely close, within < 1 kcal/mol, to the MP2//MP2 values 
as computed in the same basis set, themselves in good agreement 
with MP4 calculations. Moreover, the errors are not systematic 
but can be positive or negative—an indication that they do not 
reflect a physically based inadequacy of the method. 

The corrective factors for the one-electron bond dissociation 
energies are even easier to calculate than in the three-electron 
case. Indeed, as discussed above, there is no breathing orbital 
effect in the orbitals that are directly involved in the bond, i.e. 
%\ and %x. As a consequence, these orbitals are the same 
irrespective of the other orbitals in the system. Thus, the two 
different off-diagonal matrix elements now share a common 
monoelectronic h integral and differ only in the overlap terms, 
S(I-e) of the inactive orbitals: 

H ^ L e ) = (Z1IhIz,) (27) 

H ^ a - e ^ S a - e X z J h l x , ) (28) 

(55) Applying the rules of qualitative VB theory, the energy difference 
between the two different determinants in eq 24 is nothing but the energy 
difference between two orbitals: the pure AO xl ar>d t n e bonding MO 
(xl + #"). This energy difference is well-known from qualitative MO 
theory to be proportional to the reduced resonance integral, (xlWx")-
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S(l-e) = ...<<^i>...<0K>-.. (29) 
Therefore, the ratio of the two matrix elements depends now 
only on the overlap factor S(l-e), so that the corrected 
dissociation energies for one-electron bonds can be calculated 
through eq 26 by setting p to unity. Note that the overlap 
product in eq 29 does not contain active orbitals, unlike the 
case of three-electron bonds. This and the fact that the 
corrective factor involves no ft term in one-electron bonds 
implies that the REs are less overestimated, at the Hartree— 
Fock level, in one-electron than in three-electron bonds. 

The S factors and final UMHF dissociation energies for one-
electron bonds are displayed in the fourth and fifth columns of 
Table 2. The corrected bond energies are once again in excellent 
agreement with the dissociation energies calculated at the MP2 
and MP4 levels in the same basis set, with a maximum deviation 
of nearly 1 kcal/mol. The only exception is B2H4+ in its Did 
conformation: here the UMHF bonding energy amounts to 52.1 
kcal/mol, vs 54.6 and 56.0 kcal/mol at the MP2 and MP4 levels, 
respectively. However, the error does not lie in the description 
of the odd-electron bond, as indicated by the good UMHF value 
for the Dih conformation. Rather, it lies in the incorrect 
description, at the Hartree—Fock and MP2 levels, of the 
interaction between the empty orbital of one boron atom and 
the hydrogens of the other, in the twisted Did conformation, a 
hyperconjugative phenomenon that falls outside the scope of 
the present method. 

Having shown in great detail that the resonance energies can 
be scaled nonempirically, we may tentatively point out the 
possibility of using an average of the individual /JS terms, as a 
uniform scaling factor for all bonds, in the following form: 

De(RE-corrected) = ?7De(uncorrected); 
rj(3-e) = 0.926; rj(l-e) = 0.985 (30) 

These average scaling factors lead to bond energies in excellent 
agreement with the accurate values in Tables 1 and 2. However, 
only future applications will reveal the feasibility of having 
average scaling factors which can be used across the board. 

Application: A Prediction of Substituent Effect. The 
question of substituent effect on three-electron bond strength 
is an important and still unsettled question. It has recently been 
addressed by Asmus48 and by lilies et al.47 by reference to the 
bond energies of R2S .\ SR2+ species. The results of lilies et 
al.47 clearly show that the bond strength is almost constant in 
the series with R = H, Me, and Et. In contrast, preliminary 
calculations of R20.\OR2+ by Radom et al.,5 on a crude UHF/ 
3-2IG level, indicate that this latter series is expected to exhibit 
significant substituent effect. To make a definitive prediction, 
we applied the UMHF method to calculate the bond energy of 
the Me20.\OMe2+ radical cation, and to compare it with the 
energy of the water dimer cation. Using the average rj scaling 
factor above, the resulting UMHF bond energy amounts to 30.7 
kcal/mol, in close agreement with the MP2 result of 31.9 kcal/ 
mol (Table 1, last entry). Furthermore, a comparison of this 
value with the bond energy of the water dimer cation radical 
(Table 1, entry 6) shows that the CH3 substituents exert a 
weakening of ca. 15 kcal/mol. Thus, the UMHF predicts that 
the O /. O+ bond strength should exhibit a significant substituent 
effect unlike the S.-.S+ bond. This application projects the 
utility of the UMHF approach to provide an easy acess to 
experimentally interesting three-electron-bonded species, and 
for making predictions of yet unknown trends. 

Discussion 

It appears from the above study that the Hartree—Fock 
method is inadequate for portions of the potential surface that 

involve charge fluctuation. The reason why UHF geometries 
for odd-electron-bonded species are nevertheless correct are best 
discussed in the case of molecules displaying a left-right 
symmetry, although the reasoning can be made more general. 
In the vicinity of the local minimum, as energetically high as it 
may be, the left-right symmetry is generally still intact at the 
UHF level, and this means that in this portion of the potential 
surface there is no difference between the UHF method and 
the UMHF one. Since the latter method is shown to give 
satisfactory bonding energies, it follows that the UHF potential 
surface has also a locally correct shape resulting therefore in 
optimized geometries in good agreement with those calculated 
at the MP2 level, even if the optimized species is at the same 
time high in energy. Indeed, in some cases,5 the odd-electron-
bonded species is found, at the UHF level, to be a transition 
state which by breaking its left-right symmetry rolls down to 
low-energy hydrogen-bonded species. Clearly, if the geometry 
optimization were to be carried out within the UMHF frame
work, the symmetry-breaking mode would have been frozen, 
resulting precisely in the UHF geometry, but now as a real 
minimum (no imaginary frequency). This implies that all the 
stationary points calculated at the UHF level should display 
reasonable geometries, even if they are not found to be of the 
right nature! Indeed, the geometries of three-electron bonded 
radicals, as optimized by Radom5 at the UHF and MP2 levels, 
are rather close to each other (compare also our MP2-optimized 
geometries for one-electron-bonded radicals, in Figure 1, to the 
geometries optimized by Clark at the UHF level). 

Based on the above understanding of the Hartree—Fock error 
and its link to the breathing orbital effect, we can also account 
for the surprising performances of the UHF method in minimal 
basis set.5 The adaptation of atomic or fragment orbitals to 
different electronic charge involves changes in polarization and 
size. However, these two effects are nonexistent in a minimal 
basis set which is devoid of polarization functions and where 
the size of the atomic orbitals is fixed. Therefore, in such a 
basis set, neither the bonded molecule nor the separated 
fragments have the freedom to adapt their orbitals to the 
effective local charge. It follows that the UHF description of 
the odd-electron bond and its separated fragments is balanced 
much like in the framework of the UMHF procedure, excluding 
of course deficiencies inherent to the basis set itself. This 
explains why Radom5 has found surprisingly good orders of 
magnitudes for three-electron-bonding energies at the simplest 
of all levels, UHF in STO-3G basis set. Far from being 
fortuitous, this finding is linked to a general rule—that the 
Hartree—Fock artefact in charge-fluctuating regions of the 
potential surfaces vanishes in minimal basis sets. Thus, for very 
large odd-electron-bonded complexes, optimizing the geometries 
and calculating the bonding energies at this simple level is not 
meaningless if only qualitative results are sought. 

Conclusion 

Charge fluctuation is an inherent physical character of odd-
electron bonding, and the electron density should adapt instan
taneously to the fluctuating charge. This response of the 
electron density is reflected through the shape and size of the 
orbitals. Thus in a resonating picture, each resonance structure 
is described by charge-fluctuation-adapted orbitals, also called 
breathing orbitals51 of the type depicted in 3 and 4. The failure 
of the Hartree—Fock method to reproduce odd-electron bonding 
energies originates from an inherent constraint which freezes 
the orbitals at averaged shapes and sizes and prevents their 
adaptation to the instantaneous charge fluctuation. While the 
computational bias affects bond energies, it does not influence 
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optimized geometries which are found close to being correct at 
the UHF level; albeit at the same time the UHF stationary point 
may not be a minimum but a saddle point. 

The Hartree—Fock bias results in two different deficiencies: 
The principal effect is the poor description of the individual 
resonance structures at bonding distances, while the secondary 
effect is the overestimation of the resonance energy. Together, 
these two effects do not compensate each other and consequently 
the odd-electron-bonded species lies too high in energy relative 
to the separated fragments. The UMHF procedure that we 
propose in this work corrects for these two deficiencies, and 
yields odd-electron dissociation energies in satisfactory agree
ment with accurate calculations performed in the same basis 
set. The UMHF procedure is based on the simple UHF method 
and has the same computational requirements. Further, it can 
be used by means of standard ab initio programs, without any 
extra programming effort. The procedure may therefore be used 
to study large size species and thereby broaden the range of 
odd-electron-bonded species that can be investigated theoreti
cally. 

Appendix: Extension to Unsymmetrical Molecules 

The problem at hand is to optimize the orbitals of the 
separated fragments with the same average occupancy, possibly 
fractional, as in the bonded molecule. In the UHF framework, 
one seeks orbitals that minimize the energy of the following 
functional: 

V=Cl\..4i...<t>i\ + C2\...<Pi...\; C] + C2
2= 1 (A.l) 

This is a weighted sum of two determinants, one in which the 
fragment under scrutiny involves the fluctuating electron in the 
spin orbital 0a, and one in which the fragment has lost this 
electron. If the fragment that is considered in eq A. 1 is more 

electronegative than the other, then the coefficient C\ will be 
larger than Ci, and vice versa. 

Applying the traditional Hartree—Fock equations leads to the 
result that the functional W is minimal in energy if the following 
F operator is diagonal in the basis of the optimized orbitals: 

occ C 1 

F = h + £ ( J , " K,.) + - — — ( J a - K.) (A.2) 

were the h, J, and K operators have their usual meaning. The 
orbitals are then determined in the usual way by iteratively 
diagonalizing the open-shell Fock operator displayed in eq A.2. 
Note that this operator is of UHF type, but that an ROHF Fock 
operator with arbitrary fractional occupancies might also be 
used. The advantage of the second type is that it is already 
implemented in several standard ab initio Hartree—Fock pro
grams; however, the UHF type may be recommended for its 
greater flexibility. 

The C] and Ci coefficients which must reflect the average 
electron distribution at the equilibrium geometry must still be 
determined. This can be done by means of a simple Mulliken 
population analysis of the bonded molecule, which yields the 
orbital population C, for fa. Note that the inaccuracy which is 
usually attached to this kind of population analysis does not 
apply here. Indeed, the Mulliken population of an orbital is 
inaccurate only when this orbital strongly overlaps with other 
orbitals, but in the odd-electron species this overlap is always 
rather weak (about 0.17 as a standard value for three-electron 
bonds), as has been shown by Radom.5 
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